Received 10 March 2006

Accepted 16 March 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Juan-Lan Huang and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.032 wR factor = 0.087 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Benzoylacetonato)chloro[3-(dimethylamino)propylamine]copper(II)

In the molecular structure of the title complex, $[Cu(C_{10}H_9O_2)Cl(C_5H_{14}N_2)]$, the Cu^{II} atom is in a distorted square-pyramidal geometry, coordinated by two O atoms of a benzoylacetonate ligand and two N atoms of a 3-(dimethyl-amino)propylamine ligand in the basal plane, while a Cl atom occupies the apical position.

Comment

In recent years, the study of the metal coordination of β diketonate and its derivatives has attracted great interest. The metal-organic chemical vapour deposition (MOCVD) method is an established technology for the preparation of thin metallic films and metal complexes of β -diketonate derivatives can be good MOCVD precursors (Nakamori *et al.*, 1988; Donald *et al.*, 1992; Xie *et al.*, 2000). Many complexes of β diketonate derivatives with the formula M(N-N)(O-O)(M = Cu; N-N = o-phenanthroline or tetramethylenediamine; O-O = salicylaldehydate, acetylacetonate or benzoylacetonate) have been synthesized and characterized (Elmali *et al.*, 1993, 1995, 1997; Elerman *et al.*, 1995, 2000; Elerman & Geselle, 1997; Kabak *et al.*, 1999; Jalilehavand *et al.*, 1996). In the present paper the crystal structure of a related Cu^{II} complex, (I), is reported.

The crystal structure of (I) consists of discrete molecules (Fig. 1). The Cu^{II} atom is in a distorted square-pyramidal geometry, being coordinated by two O atoms of a benzoylacetonate ligand and two N atoms of a 3-dimethylamino-1propylamine ligand in the basal plane, while a Cl atom occupies the apical position. The structure of (I) is similar to those of the previously reported complexes $[CuCl(C_{10}H_9O_2) (C_{12}H_8N_2)$] (Elerman *et al.*, 2000) and $[CuCl(C_5H_7O_2) (C_6H_{16}N_2)$] (Jalilehavand *et al.*, 1996). The Cu–O distances (Table 1) are comparable to those in the complex [CuCl- $(C_{10}H_9O_2)(C_{12}H_8N_2)$] (Elerman *et al.*, 2000), but are shorter than those observed in another complex with a mean value of 1.986 (5) Å (Heldal & Sletten, 1997). The Cu-N distances in (I) are similar to those reported for [CuCl-

© 2006 International Union of Crystallography All rights reserved

Figure 1

A view of the molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 2

One-dimensional chains of the title complex. Dashed lines indicate the hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

 $(C_5H_7O_2)(C_6H_{16}N_2)]$ (Jalilehavand *et al.*, 1996). The Cu–Cl bond length is in the middle of the range of the following values: 2.485 (1) (Elerman *et al.*, 2000), 2.500 (2) (Jalilehavand *et al.*, 1996), 2.615 (2) (Jian *et al.*, 2004) and 2.734 (4) Å (Phelps *et al.*, 1976). The six-membered chelate ring Cu1/N1/ C11–C13/N2 adopts a chair conformation. The dihedral angles between the plane N1/C11/C13/N2 and planes C11–C13 and N1/N2/Cu1 are 58.57 (2) and 38.43 (2)°, respectively. Atoms O1/C7–C9/O2 are essentially coplanar (with r.m.s deviation 0.016 Å) and the dihedral angle between this plane and the phenyl ring is 22.70 (1)°. In the crystal structure, intermolecular N–H···Cl hydrogen bonds link molecules into one-dimensional chains along [010] (Table 2 and Fig. 2).

Experimental

A 10 ml ethanol solution of benzoylacetone (0.16 g, 1.0 mmol) was added to a stirred solution of $CuCl_2 \cdot 2H_2O$ (0.17 g, 1.0 mmol) in ethanol (10 ml). To the above mixture, 3-dimethylamino-1-propylamine (0.10 g, 1.0 mmol) was added dropwise with refluxing for about 1 h. The solution was left to stand undisturbed at room temperature for several days to yield green single crystals suitable for X-ray diffraction analysis.

Crystal data

 $\begin{bmatrix} Cu(C_{10}H_9O_2)Cl(C_5H_{14}N_2) \end{bmatrix} \\ M_r = 362.34 \\ Monoclinic, P2_1/c \\ a = 11.951 (2) Å \\ b = 6.8459 (14) Å \\ c = 20.489 (4) Å \\ \beta = 106.12 (3)^{\circ} \\ V = 1610.4 (6) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Rigaku Saturn70 CCD (4 × 4 bin mode) diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.562, T_{max} = 0.737$ 12294 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.087$ S = 1.093743 reflections 193 parameters H-atom parameters constrained $D_x = 1.494 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 4775 reflections $\theta = 3.2-27.7^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 293 (2) K Prism, green 0.40 × 0.32 × 0.20 mm

3743 independent reflections 3290 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.7^{\circ}$ $h = -15 \rightarrow 14$ $k = -8 \rightarrow 8$ $l = -26 \rightarrow 26$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^{\ 2}) + (0.0546P)^2 \\ &+ 0.0981P] \\ &where \ P = (F_{\rm o}^{\ 2} + 2F_{\rm c}^{\ 2})/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.81 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9250 (14)	O1-C7	1.270 (2)
Cu1-O2	1.9329 (13)	O2-C9	1.258 (2)
Cu1-N1	1.9877 (14)	C6-C7	1.478 (3)
Cu1-N2	2.0729 (15)	C7-C8	1.371 (3)
Cu1-Cl1	2.5812 (7)	C8-C9	1.384 (3)
O1-Cu1-O2	91.35 (6)	N2-Cu1-Cl1	91.73 (5)
O1-Cu1-N1	84.99 (6)	C7-O1-Cu1	127.16 (13)
O2-Cu1-N1	152.17 (6)	C9-O2-Cu1	126.51 (13)
O1-Cu1-N2	171.99 (6)	C11-N1-Cu1	118.41 (11)
O2-Cu1-N2	87.44 (6)	O1-C7-C6	114.61 (17)
N1-Cu1-N2	92.39 (6)	C8-C7-C6	120.60 (17)
O1-Cu1-Cl1	96.22 (4)	C7-C8-C9	124.45 (17)
O2-Cu1-Cl1	105.42 (4)	C11-C12-C13	114.47 (17)
N1-Cu1-Cl1	102.40 (5)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdot \cdot \cdot Cl1^i$	0.90	2.59	3.3974 (17)	150
$N1 - H1C \cdot \cdot \cdot Cl1^{ii}$	0.90	2.55	3.4379 (16)	170

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y - 1, z.

All H atoms were included in calculated positions. For methyl C atoms C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ and the methyl groups were allowed to rotate to fit the electron density; for other H atoms C-H_{aromatic} = 0.93 Å, C-H_{aliphatic} = 0.97 Å, N-H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

This work was financially supported by the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces.

References

- Bruker (2002). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Donald, C. B., Masihul, H., Michael, B. H., Majid, M., Omar, F. Z., Robin, G. P. & John, O. W. (1992). J. Chem. Soc. Chem. Commun. pp. 575–576.
- Elerman, Y., Atakol, O., Svoboda, I. & Geselle, M. (1995). Acta Cryst. C51, 1520–1522.
- Elerman, Y. & Geselle, M. (1997). Acta Cryst. C53, 549-551.
- Elerman, Y., Kara, H., Özcan, S. & Kendi, E. (2000). Acta Cryst. C56, 950-951.
- Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr. 203, 271– 274.

- Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1995). Acta Cryst. C51, 2520–2522.
- Elmali, A., Elerman, Y., Svoboda, I., Fuess, H., Griesar, K. & Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157–161.
- Heldal, H. E. & Sletten, J. (1997). Acta Chem. Scand. 51, 122-124.
- Jalilehavand, F., Ishii, Y., Hidai, M. & Fukuda, Initial? (1996). J. Chem. Soc. Dalton Trans. pp. 3251–3256.
- Jian, F. F., Tong, Y. P., Xiao, H. L., Wang, Q. X. & Jiao, K. (2004). Chin. J. Struct. Chem. 23, 979–984.
- Kabak, M., Elmali, A., Kavlakoglu, E., Elerman, Y. & Durlu, T. N. (1999). Acta Cryst. C55, 1650–1652.
- Nakamori, T., Abe, H., Kanamori, T. & Shibata, S. (1988). Jpn J. Appl. Phys. 27, 1265–1267.
- Phelps, D. W., Goodman, W. H. & Hodgson, D. J. (1976). Inorg. Chem. 15, 2266–2271.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xie, M. Y., Qian, C. T., Gao, L. J. & Sun, J. (2000). Chin. J. Struct. Chem. 19, 419–422.